Orientation Beautification of Reverse Engineered Models

W. Puech¹

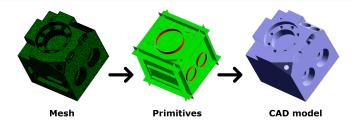
R. Bénière² G.

G. Subsol¹

¹Research-team ICAR, LIRMM, CNRS / Univ. Montpellier, France ²C4W, Montpellier, France

silvere.gauthier@lirmm.fr

January 28, 2018



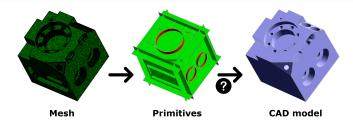
Reverse Engineering

Definition

Extraction of design, functionality or manufacturing information of an object.

 \Rightarrow Reconstruction of a CAD model (= combination of geometrical primitives) from a 3D acquisition (= 3D mesh or 3D point cloud).

S. Gauthier, W. Puech, R. Bénière, and G. Subsol, "Analysis of digitized 3D mesh curvature histograms for reverse engineering," Computers in Industry, vol. 92-93, pp. 67 – 83, 2017.

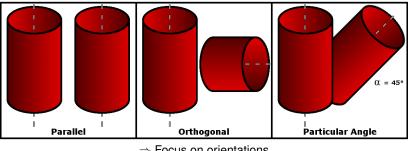

Experimental results

Reverse Engineering

Definition

Extraction of design, functionality or manufacturing information of an object.

 \Rightarrow Reconstruction of a CAD model (= combination of geometrical primitives) from a 3D acquisition (= 3D mesh or 3D point cloud).



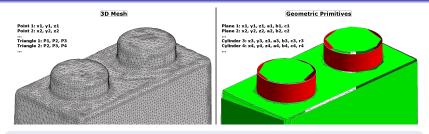
Problem: how to ensure exact geometric relations between primitives?

Conte	xt
000	

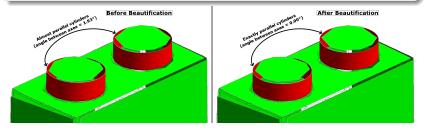
Beautification

Solution: apply some constraints in a so-called beautification process.

⇒ Focus on orientations

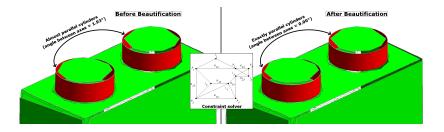

F. C. Langbein, "Beautification of Reverse Engineered Geometric Models," PhD Thesis, Department of Computer Science, Cardiff University, 2003.

Context ○○● Proposed Method


Experimental results

Conclusion

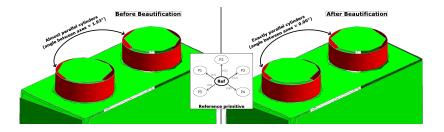
Beautification



Input: set of primitives (automatically extracted from scan data) Output: geometric relations / adjusted primitives respecting them

Conclusion

Beautification

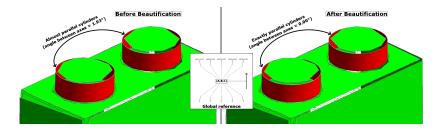

Approach 1

Resolve globally the constraint system. **Problems:** high computational cost, existence of a solution.

F. C. Langbein, A. D. Marshall, and R. R. Martin, "Choosing Consistent Constraints for Beautification of Reverse Engineered Geometric Models," Computer-Aided Design, vol. 36, no. 3, pp. 261–278, 2004.

Beautification

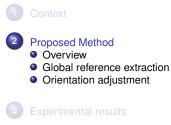
Approach 2


Choose a reference primitive and progressively satisfy relations. **Problems:** global consistency, choice of reference.

J. S. S. Chen, and H. Y. Feng, "Idealization of scanning-derived triangle mesh models of prismatic engineering parts," International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–17, 2015.

Conclusion

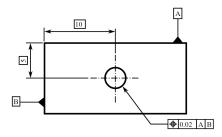
Beautification


Approach 3

Find global reference information and use it to independently satisfy relations.

I. Kovács, T. Várady, and P. Salvi, "Applying geometric constraints for perfecting CAD models in reverse engineering," Graphical Models, vol. 82, pp. 44 – 57, 2015.

Table of contents


Proposed Method

Experimental results

Conclusion

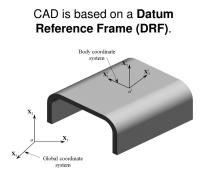
Global References in CAD

Approach 3: find global reference information.

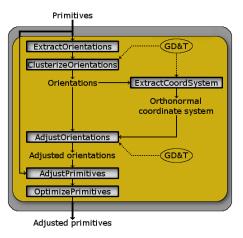
Geometric Dimensioning and Tolerancing (GD&T)

System for defining and communicating engineering tolerances.

Datum references


Theoretical planes, axes or points against which measurements are made.

Proposed Method


Experimental results

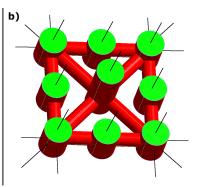
Conclusion

Overview

 \Rightarrow retrieve this **DRF** from the initial primitives and their parameters.

a)

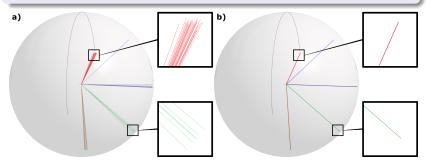

Proposed Method


Experimental results

Proposed Method

Datum reference frame extraction

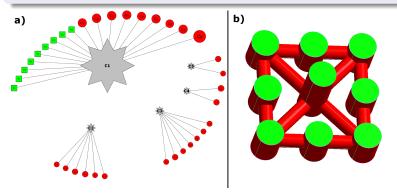
• Extract orientation vectors from the primitives.



Proposed Method

Datum reference frame extraction

- Clusterize orientation vectors.
- Compute an average orientation vector for each cluster.

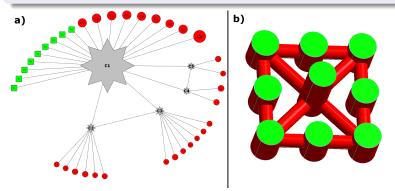

- The average orientation is weighted by primitive area.
- A weight is assigned to the corresponding cluster.

Experimental results

Proposed Method

Datum reference frame extraction

- Compute parallel and orthogonal relations between orientation vectors.
- Build an orientation graph (cluster membership and orthogonality).

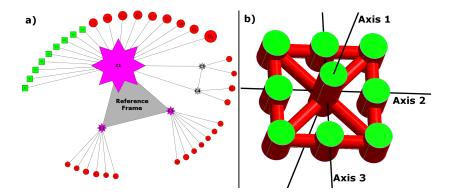

Orientation vectors linked with the same cluster \rightarrow "parallel".

Experimental results

Proposed Method

Datum reference frame extraction

- Compute parallel and orthogonal relations between orientation vectors.
- Build an orientation graph (cluster membership and orthogonality).

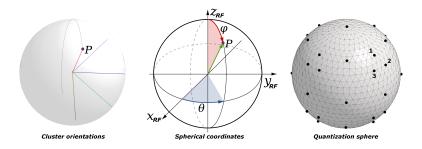

Linked clusters \rightarrow "orthogonal".

Experimental results

Proposed Method

Datum reference frame extraction

• Search for cycles in the orientation graph.

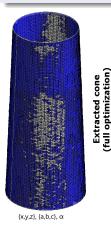


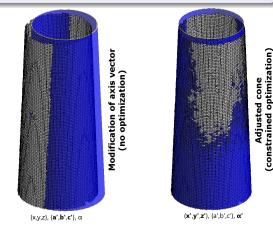
Cycle with the highest weight \rightarrow Datum Reference Frame.

Proposed Method

Orientation adjustment

- Compute spherical coordinates (θ, ϕ) from the Datum Reference Frame.
- Quantize the angles θ and ϕ according to predefined GD&T.




 \rightarrow Quantization tolerance and specific angles (30°, 45°).

Proposed Method

Orientation adjustment

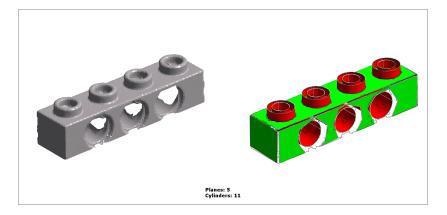
- Assign quantized cluster orientation to corresponding primitives.
- Optimize primitive fitting on mesh constrained by the new orientation.

Table of contents

Conclusion

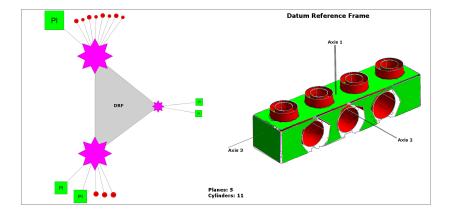
13/19

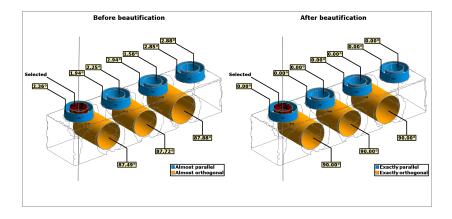
Experimental results


Conclusion

Proposed Method

Experimental results


Conclusion

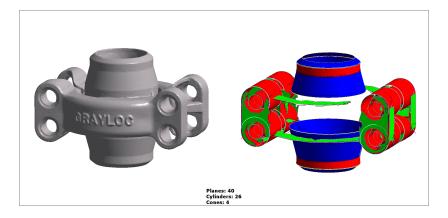


Proposed Method

Experimental results

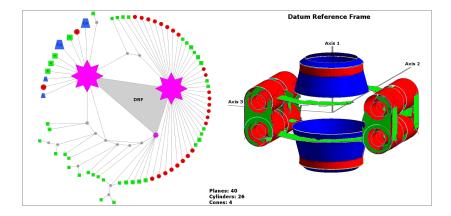
Conclusion

Experimental results

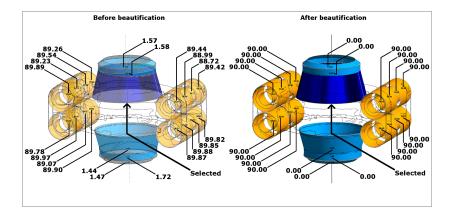

Conclusion

Proposed Method

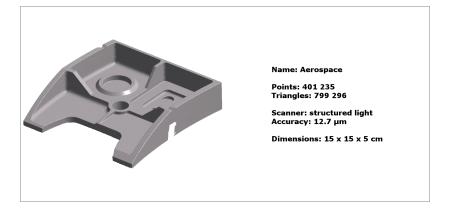
Experimental results


Conclusion

Proposed Method

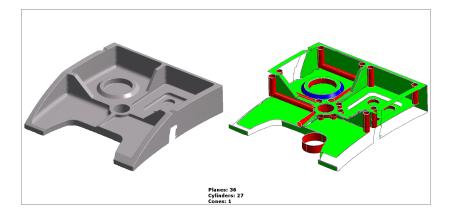

Experimental results

Conclusion


Experimental results

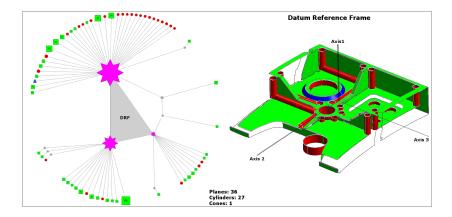
Conclusion

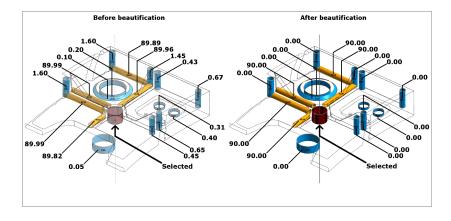
Experimental results


Conclusion

Proposed Method

Experimental results

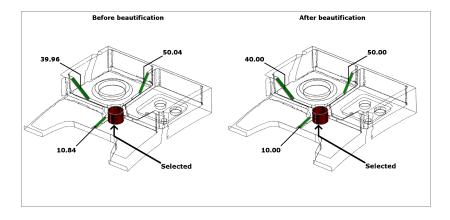

Conclusion



Proposed Method

Experimental results

Conclusion



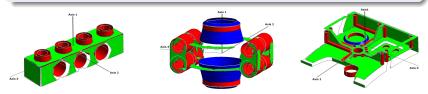
Proposed Method

Experimental results

Conclusion

Experimental results

Table of contents


2 Proposed Method

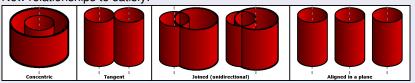
Conclusion

Datum Reference Frame (DRF)

Datum reference frames are correctly extracted even with complex data.

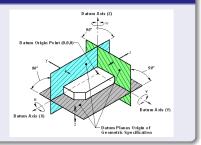
Primitive adjustment

Primitive orientations are independently adjusted according to the DRF. Other parameters (position, dimension) are improved by constrained fitting.


Performances

Beautification takes only a few seconds even for hundreds of primitives.

Perspectives


Other relationships

New relationships to satisfy:

Other Datum References

Extract other datum references from the **adjusted** primitives

Thank you Some questions?

Email: silvere.gauthier@c4w.com / silvere.gauthier@lirmm.fr

Silvère Gauthier, W. Puech, R. Bénière, G. Subsol, Orientation Beautification of Reverse Engineered Models, 2018

